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Abstract. We present here analytic expressions for the generalised Lindhard function, also referred to as
Fermi gas polarisation propagator, in a relativistic kinematic framework and in the presence of various
resonances and vertices. Particular attention is payed to its real part, since it gives rise to substantial
difficulties in the definition of the currents entering the dynamics.

PACS. 21.60.-n Nuclear structure models and methods – 21.30.Fe Forces in hadronic systems and effective
interactions – 24.10.Cn Many-body theory

1 Introduction

The linear response theory, whose key ingredient is the
Lindhard function (LF), is usually formulated in many-
body frameworks like RPA, Landau quasi-particle theory
and the like (see, e.g., ref. [1]). Noteworthy, these simple
approaches are often able to describe successfully a quite
involved physics.

The LF [2], as originally defined, is just the particle-
hole polarisation propagator for a non-relativistic free
Fermi gas (FFG) of electrons, and reads

Π0(q0, |q|) = −2i

∫

d4p

(2π)4
G0(p+ q)G0(p) , (1)

where

G0(p) =
θ(|p| − kF )

p0 −
|p|

2

2m
+ iη

+
θ(kF − |p|)

p0 −
|p|

2

2m
− iη

(2)

is the Green’s function of the free electron. The factor 2
in front of (1) comes from the spin traces and is replaced
by a factor 4 in nuclear physics (spin plus isospin).

The explicit form of (1) is known since 1954 [2] and,
more recently [3,4], it has been expressed according to

Π0(q0, |q|) = 2m
[

I[y(|q|, q0 + iη sgnq0), |q|]

+I[y(|q|,−q0 − iη sgnq0), |q|]
]

, (3)
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where

I[y, |q|] =
1

(2π)2|q|

{

ykF +
1

2
(y2 − k2

F ) log
y − kF
y + kF

}

,

(4)

y(|q|, q0) =
mq0
|q|
−
|q|

2
(5)

being the West’s scaling variable [5]. The analytic exten-
sion when the arguments of the logarithms become nega-
tive is prescribed to be

log(x± iη) = log |x| ± iπθ(−x) (6)

and the imaginary part of the LF, namely the response to
a scalar(-isoscalar) probe, is thus obtained.

Actually many calculations of a fermionic relativistic
response function are available —and hence a number
of relativistic many-body computations have been per-
formed. Still the need of analytic expressions for the rel-
ativistic generalisation of the LF, as an useful input for a
variety of calculations, is felt: indeed the results presently
available (see, e.g., ref. [6], which completes a previous re-
sult [7], and ref. [8]) mostly refer to the electroweak case.
However we are also interested in the relativistic response
to pions and ρ-mesons, which lead to different generalisa-
tions of the LF. Further, the excitation of nucleonic reso-
nances needs to be accounted for and, last but not least,
in the quark-gluon plasma the case of massless particles
(or one massive —an s or a c quark— and one massless)
deserves some attention.

In this paper we address a number of the above cases,
showing that they can be handled algebraically in terms
of only a few explicit functions.
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The scope we pursue is to provide, as a hopefully useful
tool for people involved in the field, a rather comprehen-
sive description of the generalised LF in the relativistic
case for nucleons and for 1/2 and 3/2 spin resonances.
The limiting case quoted above will also be examined in
detail.

2 Setting the problem

The channel dependence of the FFG polarisation propa-
gator in a relativistic framework is more pronounced than
in the non-relativistic case. We start with the generalised
LF for a non-interacting nucleonic system

Π0
xy(|q|, q0) = −iTr

∫

d4p

(2π)4
Sm(p+ q)OxSm(p)Oy , (7)

where

Sm(p) =
6p+m

2Ep

×

{

θ(|p| − kF )

p0 − Ep + iη
! +

θ(kF − |p|)

p0 − Ep − iη
−

1

p0 + Ep − iη

}

= (6p+m)Sm(p)

= S0(p) +
6p+m

2Ep
2iπδ(p0 − Ep)θ(kF − |p|) (8)

is the nucleon (electron, quark . . . ) propagator in the
medium, with

Ep =
√

p2 +m2 , (9)

the indices x and y label the incoming and outgoing chan-
nel (not necessarily coincident) and Ox, Oy are some com-
binations of γ matrices and momenta embodying the ver-
tices characterising the channels. Moreover, S0 is the anal-
ogous of Sm in the vacuum.

We have also introduced a “reduced” fermion propa-
gator Sm(p) spoiled of the Dirac matrix structure, whose
inverse reads

D(p) = p2 −m2 . (10)

Although Π0
xy as given in eq. (7) is ill-defined since

it is expressed by a divergent integral, we will not re-
quire renormalisability, since one may also be interested in
effective theories. However, a regularisation procedure is
needed in order to cancel the divergences. In the case of (7)
(one-loop level) the vacuum subtraction is sufficient [9].

Thus, defining the following polynomial in the rela-
tivistic invariants p2, p · q and q2

fxy(p, q) = Tr(6p+m)Ox(6p+ 6q +m)Oy , (11)

Π0
xy will read

Π0
xy(|q|, q0) = −i

∫

d4p

(2π)4

[

Sm(p+ q)Sm(p)

−S0(p+ q)S0(p)
]

fxy(p, q) , (12)

where S0 = (6p+m)−1S0.

The frequency integration in (12) then reduces to the
evaluation of the residua in the (say) lower half-plane,
because along the half-circle at infinity the ±iη in the de-
nominators become irrelevant and the integrand vanishes.
Thus the regularised Π0

xy is given by

Π0
xy(|q|, q0) =

∫

d3p

(2π)3
1

4EpEp+q

×

{

θ(|p + q|−kF )θ(kF−|p|)

q0 − Ep+q + Ep + iη
fxy(p, q)

∣

∣

p0=Ep+q−q0

−
θ(kF − |p + q|)θ(|p| − kF )

q0 − Ep+q + Ep − iη
fxy(p, q)

∣

∣

p0=Ep

+
θ(kF − |p + q|)

q0 − Ep+q − Ep + iη
fxy(p, q)

∣

∣

p0=Ep+q−q0

−
θ(kF − |p|)

q0 + Ep+q + Ep − iη
fxy(p, q)

∣

∣

p0=Ep

+θ(|p + q| − kF )θ(|p| − kF )

×
fxy(p, q)

∣

∣

p0=Ep+q−q0
−fxy(p, q)

∣

∣

p0=Ep

q0 − Ep+q + Ep

}

(13)

(note that the term in the last line is never singular).
Now in each denominator the factor ±iη can be re-

placed by +iη sgn(q0). In fact the denominators in the
first and the third term can only vanish when q0 > 0 so
here the replacement iη → iη sgn(q0) is immaterial, while
the second and fourth ones can vanish for q0 < 0 so that
the term −iη plays the same role of iη sgn(q0).

Since, as we shall see, the explicit form of fxy is inessen-
tial for the following discussion, we consider the case
fxy(p, q) = 1. Then, with some manipulations of the θ
functions and a change of variable, eq. (13) simplifies to

Π0(|q|, q0) =

∫

d3p

(2π)3
θ(kF − |p|)

2Ep

×

{

1

(q0 + iη sgn(q0) + Ep)2 − E2
p+q

+
1

(q0 + iη sgn(q0)− Ep)2 − E2
p+q

}

. (14)

Equation (14) displays a great advantage from a practical
point of view, since

1) each term contains only one θ function, hence the an-
alytic calculation of the integrals is simplified;

2) Π0 can be evaluated in a region where it is real and
then its imaginary part follows by analytic extension
by suitably approaching the real axis in the complex
plane of q0;

3) it is manifestly even in q0.

The same procedure led to the form (3) for the non-
relativistic LF.

Now consider an N∗ excitation of massM . In this case
the polarisation propagator at the lowest order is built up
by two non-coincident Feynman diagrams, namely (the
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star will always denote quantities involving a resonance
or a resonance-hole pair)

Π∗xy(|q|, q0) = −i

[

∫

d4p

(2π)4
S
∗(p+ q)Sm(p)f∗xy(p, q)

+

∫

d4p

(2π)4
S
∗(p− q)Sm(p)f∗xy(p,−q)

]

, (15)

where
S
∗(p) =

[

p2 −M2 + iη
]−1

. (16)

For later purposes we also introduce the inverse of S∗,
namely

D
∗(p) = p2 −M2 . (17)

The explicit form of f∗xy will be specified later.
Clearly, each term in (15) contains only one θ-function

because there is no Pauli blocking. Convergence is ensured
by vacuum subtraction and, at variance of the nucleon-
hole case, eq. (8) (fourth line) tells us that p0 can be re-
placed everywhere by Ep, since S0 never contributes.

3 Structure of the Lindhard functions

In this section we set up the general structure of the rela-
tivistic LFs, which will be later evaluated in some specific
cases.

Before presenting the detailed calculation, we observe
that the Lorentz covariance is broken by the presence of an
infinite medium like the FFG, since this naturally selects a
privileged frame of reference, namely the one in which the
FFG is at rest. Indeed in this system the nuclear matter
has zero momentum, while any boost, no matter how small
the velocity is, generates a state with infinite momentum.

If we instead consider a system with massM and finite
momentum p, then any response function f to a probe
carrying a four-momentum qµ = (q0,q) can only depend
upon Lorentz scalars, namely f = f(p2 = M2, p · q, q2);

however in theM →∞ limit p·q = q0
√

p2 +M2−p · q→
q0M , so that the Lorentz covariance is broken since f will
depend upon q0 and q separately.

3.1 The ingredients

Having clarified the functional dependence of the LFs, we
now introduce the ingredients needed to their evaluation.
We define the functions

U
∗[n]
rel (M ; |q|, q0) =
∫

d3p

(2π)3
En
p

2Ep

θ(kF − |p|)

(p+ q)2 −M2 + iη

∣

∣

∣

∣

∣

p0=Ep

, (18)

to be computed in the next Section. The quantities of
direct physical interest are the even and odd parts (in q0)

of U
∗[n]
rel , namely

Υ
∗[n]
± (M ; |q|, q0) = U

∗[n]
rel (M ; |q|, q0)± U

∗[n]
rel (M ; |q|,−q0) .

(19)

We shall consider in the following a variety of functions
fxy, each one giving rise to its own LF: remarkably these
all are expressed in terms of few basic cases. Note that
when fxy = 1 then eq. (14) becomes

Π0(|q|, q0) = Υ
[0]
+ (m; |q|, q0 + i sgnq0) . (20)

The above functions display a complex analytic structure
(logarithmic cuts) and have a well-defined imaginary part
and a well-defined asymptotic behaviour (in q0), namely

Υ
∗[n]
± ' q−2

0 : this means that the real part of Υ
∗[n]
± , hence

of the LF, can be univoquely recovered from its imaginary
part via dispersion relations.

However, in general fxy is a polynomial in q20 . Each
term of this polynomial generates contributions to Π0

with the same imaginary part (up to trivial coefficients),
but with different asymptotic behaviour, so that the evalu-
ation of the real part will require subtracted dispersion re-
lations. The subtracted parts will be called contact terms.
These can be expressed in terms of the kF -dependent func-
tion

T
[0] = −i

∫

d4p

(2π)4
Sm(p) renormalisation

−−−−−−−−−−→
∫

d3p

(2π)3
θ(kF − |p|)

2Ep

=
1

8π2

[

kFEF −m
2 log

kF + EF
m

]

, (21)

where EF =
√

k2
F +m2 and, more generally,

T
[n] =

∫

d3p

(2π)3
θ(kF − |p|)

2
En−1
p

=
k3
F

12π2
mn−1

2F1

(

3

2
,
1

2
−
n

2
;
5

2
;−

k2
F

m2

)

, (22)

where 2F1 is a hypergeometric function.
Note that contact terms are also indirectly related to

the renormalizability of a theory, because their presence
alter the power counting in a bosonic loop entering in an
RPA-dressed bosonic propagator closed on itself or on a
fermionic line.

Now we are in a position to deal with the general struc-
ture of the LFs. Since we shall consider (pseudo-)scalar
and (pseudo-)vector couplings, our LFs will carry 0, 1 or
2 vector indices only. Tensor couplings could bring into

play other functions (U
∗[3]
rel and U

∗[4]
rel ), but they seem not

to be, at present, of physical interest.

3.2 Scalar case: 0-index functions

Here Ox and Oy have no vector structure, hence f∗xy =

f∗xy(p
2, p · q, q2), in general a polynomial, is a Lorentz

scalar. Replacing then p2 with D(p) +m2 and using the
identity

p · q =
1

2

[

(p+ q)2 −M2
]

−
1

2
(p2 −m2)−

1

2
ρq2

=
1

2
D
∗(p+ q)−

1

2
D(p)−

1

2
ρq2 ,

(23)
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we can rewrite f∗xy in the form

f∗xy = AS
xy(q

2) +
∑

mn

λSmn(q
2) {D∗(p+ q)}

m
{D(p)}

n
,

(24)
being AS(q2) and λSmn(q

2)’s Lorentz scalars (hence the
superscript S). In (23) we have introduced, as in [10], the
dimensionless quantity

ρ = 1−
M2 −m2

q2
. (25)

In the caseM = m we have f∗xy → fxy and ρ = 1. Further,
in eq. (24) the summed indicesm, nmust satisfym+n ≥1.

If we consider the resonance-hole case, we have to in-
sert (24) into (15). Then the first term on the r.h.s. of

eq. (24) yieldsAS
xy(q

2)Υ
∗[0]
+ (M ; |q|, q0) and the second gen-

erates the contact terms, which in the present case can be
expressed in terms of the following functions:

T
∗[m,n]
S± (|q|, q0) =

−i

∫

d4p

(2π)4
{D∗(p+ q)}

m−1
{D(p)}

n−1

∓i

∫

d4p

(2π)4
{D∗(p− q)}

m−1
{D(p)}

n−1
. (26)

Then, because of the vacuum subtraction, only the n = 0
term survives in (24) (otherwise any dependence upon kF
is lost) and of course it must be m ≥ 1.

The 3/2-spin resonance generates an additional com-
plication due to the possible presence of projection op-
erators, as discussed in sect. 8 (see eq. (99) for details):
these will require the addition of a function BS(q2), whose
role will be clarified later. In conclusion, the most general
0-index LF has the structure

Π∗(0)xy (M ; |q|, q0) ≡ Π∗Sxy±(M ; |q|, q0) =

AS
xy(q

2)Υ
∗[0]
± (M ; |q|, q0)

+BS
xy(q

2)Υ
∗[0]
± (M = 0; |q|, q0)

+
∑

m≥1

λSm0(q
2)T

∗[m,0]
S± (|q|, q0) (27)

with AS
xy(q

2), BS
xy(q

2) and λSm0(q
2) to be specified accord-

ing to the problem one deals with (however BS
xy(q

2) = 0
for spin-1/2 particles).

The functions T
∗[m,0]
S± (|q|, q0), linked to the functions

T of eq. (22), are not Lorentz invariant. Those entering
our calculations are explicitly given in appendix A.

The nucleon-hole case is more involved. Equation (24)
still holds valid, provided D∗ = D, but the subtraction
scheme will be different, since D(p+q) also depends upon
kF . Thus the contact terms will also be different because
both the cases m = 0, n 6= 0 and m 6= 0, n = 0 contribute
in this instance after the vacuum subtraction.

3.3 Vector case: 1-index functions

Vector-like LFs can only arise through the combination
of a scalar and a vector vertex. Lorentz invariance would
forbid such transitions, because scalar and vectors belong
to different representations of the Lorentz group but, since
the infinite nuclear medium violates covariance due to the
presence of the θ-functions, these terms may occur. Hence
in the nuclear medium a vector meson (the ω, for instance)
can be converted into a σ.

By covariance the functions fµxy must have the struc-
ture

fµxy = αtµ + βqµ , (28)

where the transverse momentum

tµ = pµ −
p · q

q2
qµ (29)

has been introduced (t · q = 0). The second term on the
r.h.s. of eq. (28) is immediately handled, since the vector
qµ factors out of the integral and the scheme of the previ-

ous subsection applies, but it gives rise to a Π
∗(1)µ
xy which

is not gauge invariant.
Instead, the vector-like LF generated by the first term

of fµxy (to be called Π
∗(1)µ cons
xy ) obeys the conservation

law qµΠ
∗(1)µ cons
xy = 0 and can be cast into the form

Π∗(1)µ cons
xy = Π∗(1)0 cons

xy N
µ , (30)

where we have introduced the four-component object (not
a vector)

N
µ =

(

1,
q0q

i

|q|
2

)

. (31)

Hence it is sufficient to compute the 0 component of

Π
∗(1)µ
xy only. Defining

Q
∗V
± (M ; |q|, q0) = −i

∫

d4p

(2π)4
t0
{

S
∗(p+ q)Sm(p)

±S
∗(p− q)Sm(p)

}

(32)

and

T
∗[m,n]
V± (|q|, q0) = −i

∫

d4p

(2π)4
t0 {D∗(p+ q)}m−1

×{D(p)}n−1 ± (q0 ↔ −q0) (33)

the 0-component of the vector-like LF, using again (23),
takes the form

Π
∗(1)0 cons
xy± ≡ Π∗Vxy± = AV

xy(q
2)Q∗V± (M ; |q|, q0)

+BV
xy(q

2)Q∗V± (M = 0; |q|, q0)

+
∑

m

λVm0T
∗[m,0]
V± (|q|, q0) , (34)

where we have accounted for the projection operators (99)
and the parity is not specified. Again the functions A, B
and λ have to be specified according to the problem.
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The new function Q∗V± is expressible in terms of the

Υ ∗[n] as follows:

Q
∗V
± (M ; |q|, q0) = Υ

∗[1]
± (M ; |q|, q0)

+
1

2
ρq0Υ

∗[0]
∓ (M ; |q|, q0)−







0 ,
q0
q2

T[0] ,
(35)

while the T
∗[m,n]
V relevant to us are listed in appendix A.

In conclusion the general structure of the 1-index LF reads

Π∗(1)µxy (M ; |q|, q0) = Π∗Vxy+(M ; |q|, q0)N
µ

+qµΠ∗Sxy−(M ; |q|, q0) . (36)

Again the nucleonic case is more tricky, because we
must first replace (32) with

Q
V (|q|, q0) = −i

∫

d4p

(2π)4
t0Sm(p+ q)Sm(p) , (37)

next express p ·q according to (23) and finally use directly
the expression (13). Following exactly the same path lead-
ing to eq. (14), we obtain the limiting case (M = m) of
eq. (35).

3.4 Tensor case: 2-indices functions

The 2-indices functions, which require two vector-type ver-
tices, can be split into a symmetric and an antisymmetric
part that need to be studied separately.

3.4.1 Symmetric case

In the symmetric case, since fµνxy is a true tensor, Lorentz
covariance imposes the structure

fµνxy symm = a1

(

q2gµν − qµqν
)

+ a2t
µtν

+a3(t
µqν + qµtν) + a4q

µqν , (38)

ai being Lorentz invariants.
The first two terms of (38) correspond to a con-

served current. Let us denote the associated LF by

Π
∗(2)µν cons
xy symm (M ; |q|, q0), which can be split into a longi-

tudinal (Π∗Lxy ) and a transverse (Π∗Txy ) polarisation prop-
agators, defined according to

Π∗L(M ; |q|, q0) = Π∗(2)00 cons
xy symm (M ; |q|, q0) , (39a)

Π∗T (M ; |q|, q0) =

(

δij −
qiqj

|q|
2

)

Π∗(2)ij cons
xy symm (M ; |q|, q0)

(39b)

and, in a compact notation,

Π∗(2)µν cons
xy symm (M ; |q|, q0) =
(

Π∗L q0qi
|q|2

Π∗L

q0qj
|q|2

Π∗L
q20
|q|2

Π∗L
qiqj
|q|2

+ 1
2Π

∗T
(

δij −
qiqj
|q|2

)

)

.

(40)

The first term in the r.h.s. of (38) is easily handled,
since it reduces to the 0-index case. The second instead
requires the introduction of two new quantities with the
associated contact terms. We thus define

Q
∗L
± (M ; |q|, q0) =

∫

d3p

(2π)3
(t0)2

2Ep

×
θ(kF − |p|)

(p+ q)2 −M2 + iη

∣

∣

∣

∣

∣

p0=Ep

± (q ←→ −q)

= Υ
∗[2]
± (M ; |q|, q0) + q0ρΥ

∗[1]
∓ (M ; |q|, q0)

+
1

4
q20ρ

2Υ
∗[0]
± (M ; |q|, q0)−











q20ρ

2q2
T[0] ,

q0
q2

(

1− |q|2

q2

)

T[1] ,
(41)

and

Q
∗T
± (M ; |q|, q0)

=
1

|q|
2

∫

d3p

(2π)3
|p|

2
|q|

2
− (p · q)2

2Ep

×
θ(kF − |p|)

(p+ q)2 −M2 + iη

∣

∣

∣

∣

∣

p0=Ep

± (q ←→ −q)

= −
q2

|q|
2

{

Υ
∗[2]
± (M ; |q|, q0) + q0ρΥ

∗[1]
∓ (M ; |q|, q0)

+

(

1

4
q2ρ2 +

m2|q|
2

q2

)

Υ
∗[0]
± (M ; |q|, q0)

}

+























q2ρ

2|q|
2 T[0],

q0

|q|
2 T[1] ,

(42)

together with the contact terms

T
∗[m,n]
L± (|q|, q0) = −i

∫

d4p

(2π)4
(t0)2 {D∗(p+ q)}m−1

× {D(p)}n−1 ± (q0 ↔ −q0) (43)

and

T
∗[m,n]
T± (|q|, q0) =

−i

|q|
2

∫

d4p

(2π)4

[

|p|
2
|q|

2
− (p · q)2

]

× {D∗(p+ q)}m−1{D(p)}n−1 ± (q0 ↔ −q0) . (44)

Thus, applying (23) and (27), we obtain

Π∗Lxy (M ; |q|, q0) = −|q|
2
Π∗Sxy (M ; |q|, q0)

+ALT
xy (q

2)Q∗L+ (M ; |q|, q0)

+BLT
xy (q2)Q∗L+ (M = 0; |q|, q0)

+
∑

m

λLTm0(q
2)T

∗[m,0]
L+ (|q|, q0) (45)
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Π∗Txy (M ; |q|, q0) = −2q
2Π∗Sxy (M ; |q|, q0)

+ALT
xy (q

2)Q∗T+ (M ; |q|, q0)

+BLT
xy (q2)Q∗T+ (M = 0; |q|, q0)

+
∑

m

λLTm0(q
2)T

∗[m,0]
T+ (|q|, q0) (46)

(note that the same coefficients ALT , BLT and λLT enter
in bothΠ∗L andΠ∗T ). The above relations give the struc-
ture of the longitudinal and transverse LFs and thus fully

describe Π
∗(2)µν cons
xy symm through (40). Finally, the remaining

terms of (38) can be reduced to simpler cases and one gets
the final result

Π∗(2)µνxy symm(M ; |q|, q0) = Π∗(2)µν cons
xy symm (M ; |q|, q0)

+ (qµN
ν + qνNµ)Π∗Vxy−(M ; |q|, q0)

+ qµqνΠ̃∗Sxy+(M ; |q|, q0) . (47)

The last term on the r.h.s. of (47), namely Π̃∗Sxy+, corre-

sponds to a LF with the same structure of Π∗Sxy+ but with

different ingredients: these will be called ÃS , B̃S and λ̃Sm0,
respectively, to avoid confusion.

Again the nucleon-hole case must be handled sepa-
rately, by using the analogous of eq. (37). Clearly now, at

variance of the resonance case, only the Q
∗L,T
+ terms ex-

ist, and a straightforward calculation shows that eqs. (41)
and (42) still hold valid.

3.4.2 Antisymmetric case

An antisymmetric tensor should have the form

f∗µνxy antisymm = b1(t
µqν − qµtν) + b2ε

µνλρpλqρ (48)

and the general structure of Π
∗(2)µν
xy antisymm will accordingly

be

Π
∗(2)µν
xy antisymm(M ; |q|, q0)=(qµN

ν−qνNµ)Π∗Vxy−(M ; |q|, q0)

+qλN
σgσρε

µνρλΠ̃∗Vxy−(M ; |q|, q0) . (49)

Again the function Π̃∗Vxy− entering the above has the same

structure given by eq. (34), but with the functions AV ,

BV and λVm0 replaced by ÃV , B̃V and λ̃Vm0.

4 Analytic evaluation of U
∗[0]
rel (M; |q|, q0)

In this section we explicitly compute the function U
∗[0]
rel

defined by eq. (18) (the other two functions U
∗[1]
rel and U

∗[2]
rel

can be obtained along the same path and the results are
reported in appendix B).

Assuming here = q0 6= 0 we get

U
∗[0]
rel =

∫

d3p

(2π)3
1

2Ep

θ(kF − |p|)

2Epq0 − 2p · q + q2ρ

=
1

16π2|q|

kF
∫

0

pdp

Ep
log

q2ρ+ 2p|q|+ 2q0Ep
q2ρ− 2p|q|+ 2q0Ep

.

(50)

Note that the dependence upon M is fully embodied in
the inelasticity parameter ρ. Integration by parts yields

U
∗[0]
rel =

1

16π2|q|
EF log

q2ρ+ 2kF |q|+ 2EF q0
q2ρ− 2kF |q|+ 2EF q0

−
1

4π2

×

kF
∫

0

dp
q2ρEp + 2m2q0

(q2ρ− 2p|q|+ 2Epq0) (q2ρ+ 2p|q|+ 2Epq0)
.

(51)

The integrand in (51) displays four poles, located at
p = ±y∗±. Defining

Q± = (M ±m)2 − q2 (52)

and

∆∗ =

√

ρ2 −
4m2

q2
= −

√

Q+Q−

q2
=

−

√

[(M −m)2 − q2] [(M +m)2 − q2]

q2
(53)

(with the chosen sign, ∆∗ is positive in the space-like re-
gion) we obtain for the poles the expression

y∗± =
|q|

2
ρ±

q0
2
∆∗ . (54)

The ±y∗± are the branch points defining the region where,
for real q0, (51) develops an imaginary part. In partic-
ular the lowest positive branch point is just the lowest
possible longitudinal momentum for the occurrence of a
resonance-hole pair and consequently coincides (up to a
sign) with the y scaling variable. Indeed −y∗−, taken at
M = m, is just the y scaling variable for the relativistic
Fermi gas [11].

The integrand of (51) can be split according to

Ep
32π2|q|

{

1

p+ y∗−
+

1

p+ y∗+
−

1

p− y∗−
−

1

p− y∗+

}

+
1

32π2|q|

{

R∗−
p+ y∗−

−
R∗+

p+ y∗+
−

R∗−
p− y∗−

+
R∗+

p− y∗+

}

,

(55)

where

R∗± =
|q|

2
∆∗ ±

q0
2
ρ (56)

has the property

(R∗±)
2 = m2 + (y∗±)

2 (57)

and is trivially linked to the scaling variable ψ∗ used in
refs. [10,12–14] by

R∗− = m+ (EF −m)ψ∗2 . (58)
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U
∗[0]
rel (M ; |q|, q0) = −

ρ

(4π)2
log

kF + EF

m
−

EF

16π2|q|
log

q2ρ− 2kF |q|+ 2EF q0

q2ρ+ 2kF |q|+ 2EF q0

+
q0ρ

64π2|q|
log

(kF − y∗−)
2(m2 + kF y

∗
+ + EFR

∗
+)(m

2 − kF y
∗
+ − EFR

∗
+)

(kF + y∗+)
2(m2 + kF y∗− + EFR∗−)(m

2 − kF y∗− − EFR∗−)

−
∆∗

64π2
log

m4(kF − y∗−)
2(kF + y∗+)

2

[

m4 − (kF y∗− + EFR∗−)
2
] [

m4 − (kF y∗+ + EFR∗+)
2
] (59)

U
∗[0]
rel (M ; |q|, q0) = −

y∗− + y∗+

16π2|q|
log

kF + EF

m
+

R∗+ −R∗− + 2EF

64π2|q|

× log
(kF − y∗−)

2(m2 + kF y
∗
+ + EFR

∗
+)(m

2 − kF y
∗
+ − EFR

∗
+)

(kF + y∗+)
2(m2 + kF y∗− + EFR∗−)(m

2 − kF y∗+ − EFR∗+)

−
R∗+ +R∗−

64π2|q|
log

m4(kF − y∗−)
2(kF + y∗+)

2

[

m4 − (kF y∗− + EFR∗−)
2
] [

m4 − (kF y∗+ + EFR∗+)
2
] , (60)

We can now easily compute explicitly (51), getting

see eq. (59) above

or, with some algebra,

see eq. (60) above

which depends, but for the overall factor |q|
−1

, only upon
the two scaling variables y∗±.

Finally, with E∗p =
√

M2 + p2 (hence E∗kF±q =
√

M2 + (kF ± q)2) and bringing back q0 to the real axis,
eq. (59) reduces to the compact form

U
∗[0]
rel (M ; |q|, q0) = −

ρ

16π2
l1 +

2EF + ρq0
32π2|q|

l2 −
∆∗

64π2
l3 ,

(61)
having defined the logarithmic functions

l1 = log
kF + EF

m
, (62a)

l2 = log

∣

∣

∣

∣

∣

q0 + E∗kF−q + EF

q0 + E∗kF+q + EF

∣

∣

∣

∣

∣

+ log

∣

∣

∣

∣

∣

q0 − E
∗
kF−q

+ EF

q0 − E∗kF+q +EF

∣

∣

∣

∣

∣

+ iπk2 , (62b)

l3 = log

∣

∣

∣

∣

∣

(2kF + q0∆
∗)2 − |q|

2
ρ2

(2kF − q0∆∗)2 − |q|
2
ρ2

∣

∣

∣

∣

∣

+ log

∣

∣

∣

∣

∣

∣

∣

∣

∣

(ρkF − EF∆
∗)2 −

4|q|
2
m4

q4

(ρkF + EF∆∗)2 −
4|q|

2
m4

q4

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ iπk3 , (62c)

if ∆∗ is real and

l3 = 2i arctan
4kF q0|∆

∗|

d1
− 2i arctan

2kFEF ρ|∆
∗|

d2

−2iπθ(d1)

{

θ(q0) + θ(−q0)θ(M
2 +m2 − 2k2

F + |q|
2
)

×sgn(q0 +

√

M2 +m2 − 2k2
F + |q|

2
)

}

+ 2iπθ (d2)

×

{

θ(q0) + sgn

(

q0 −

√

M2 + |q|
2
+

m4

m2 + 2k2
F

)}

(63)

d1 = 4k2
F − q

2
0 |∆

∗|2 − |q|
2
ρ2 (64)

d2 = ρ2k2
F + E2

F |∆
∗|2 −

4m4|q|
2

q4
(65)

if ∆∗ = i|∆∗| is purely imaginary (i.e., for (QT
−)

2 < q20 <

(QT
+)

2, see eq. (66)). In this case the function U
∗[0]
rel is man-

ifestly real. The two θ-functions force l3 to be continuous.
In eqs. (62) k2 and k3 are integer that can be fixed by an-
alytic extension or by checking the integral in some suit-
able points. They will be specified in the next section and
found to depend only upon the analytic structure of the
logarithms and thus remain the same for the whole set of

functions U
∗[n]
rel .

5 The response region

As previously mentioned, the singularities of (59), in-
dependent of fxy, fully determine the response regions
for particle(resonance)-hole(antiparticle) excitations. Fur-
ther, the values of the ki in (62) are also independent of fxy
and will be determined in this section, where we consider
a real q0 up to a vanishingly small imaginary part ±iη.

To set the response regions first consider the branch
points associated with the excitation of a resonance in
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the free space. They are located at

QT
± =

√

|q|
2
+ (M ±m)2 , (66)

which define the boundaries of the regions where the
production of an antiresonance-particle plus the emission
(q0 < −Q

T
+) or the absorption (q0 > QT

+) of a probe or the

excitation of a particle to a resonance (−QT
− < q0 < QT

−)

are allowed. Accordingly QT
+ and QT

− are usually referred
to as the threshold and pseudo-threshold, respectively.
These singularities clearly stem from the presence of the
Dirac sea.

Next we discuss the domain where the response of the
system to a probe accounts for the effect of the medium,
hence the effect of the Fermi sea. This is fixed by the loga-
rithmic singularities of U∗rel, which turn out to be located
at

QB
±,±(p) = ±E

∗
p±q − Ep , (67)

that, for p = kF , fix the boundaries (hence the label B)
of the resonance-hole and antiresonance-hole regions. An
easy check yields the ordering

(QB
−+)

2 > (QB
−−)

2 ≥ (QT
+)

2 > (QT
−)

2 ≥ (QB
++)

2 > (QB
+−)

2

(68)
(uniformly in p). Also, it is found that

QB
+±(p) > −|q| , QB

−±(p) < −|q| , ∀p (69)

and
(QT
±)

2 > |q|
2
. (70)

Note that six critical values of |q| exist, corresponding
to the various intersections of the boundaries. We have

(QB
−−)

2 = (−QT
+)

2 for q = q(1)cr =
M +m

m
kF ,

(71a)

(QB
++)

2 = (QT
−)

2 for q = q(2)cr =
M −m

m
kF .

(71b)

Concerning the sign of the singularities, one finds that
QB
−± < 0 and QB

++ > 0 for any value of kF . Instead, one

has QB
+− > 0 if kF < kcr

F with

kcr
F =

√

M2 −m2 , (72)

while, when kF > kcr
F , QB

−+ is negative in the interval

q
(3)
cr < q < q

(4)
cr , being

q(3)cr = kF −
√

m2 −M2 + k2
F = kF −

√

k2
F − (kcr

F )2 ,

(73a)

q(4)cr = kF +
√

m2 −M2 + k2
F = kF +

√

k2
F − (kcr

F )2 .

(73b)

This occurrence deserves a comment: in fact, in the limit-
ing case M = m, kcr

F = 0 and we are always in the second

case, with q
(3)
cr = 0 and q

(4)
cr = 2kF . In this region the re-

sponse function at fixed |q| and as a function of q0 has a
discontinuity in the derivative.

Finally other critical points arise in connection with
the light cone. It is obvious that (QT

±)
2 > |q|

2
, hence we

must only inquire about QB
+±. We find

QB
+−

{

> |q| , for q < q
(5)
cr ,

< |q| , for q > q
(5)
cr ,

(74)

QB
++

{

> |q| , for q < q
(6)
cr ,

< |q| , for q > q
(6)
cr ,

(75)

where two new critical points appear, namely

q(5)cr =
(M2 −m2)(EF − kF )

2m2
, (76)

q(6)cr =
(M2 −m2)(EF + kF )

2m2
. (77)

Now we discuss the response regions in the (q+0, ||q||)
plane and fix the corresponding values of k2 and k3 ap-
pearing in (62).

Consider first the negative time-like region. Here for
q0 < −QT

+ the antiresonance-particle production is al-
lowed in the vacuum, but is ruled out by the renormal-
isation, which subtracts out the vacuum effects. It is, in
any case, Pauli-blocked by the Fermi sea in the region
spanned by q0 = −

√

(p + q)2 +M2 − Ep for |p| < kF ,
namely

max{QB
−−(p)} > q0 > min{QB

−+(p)} .

The boundaries of the permitted response region are then
found to be

QB
−+(kF ) < q0 <

{

QT
+ , for q < q

(1)
cr ,

QB
−−(kF ) , for q > q

(1)
cr .

(78)

The resonance-hole region instead corresponds to q0 >
−|q| and lives partly in the space-like region and partly
in the time-like one. The allowed values of q0 span the
interval

min{QB
+−(p)} < q0 < max{QB

++(p)} ,

again with |p| < kF , the associated boundaries being

QB
+−(kF ) < q0 <

{

QT
− , for q < q

(2)
cr ,

QB
++(kF ) , for q > q

(2)
cr .

(79)

In order to fix k2 and k3, which are integer and con-
stant inside all the response regions, it is then sufficient to
evaluate the imaginary part of U∗rel in some particularly
simple point of the response regions.

Consider first the regions QB
++ < q0 < QT

− and QB
−+ <

q0 < −Q
T
+. Here a convenient point is |q| = 0, where

= U
∗[0]
rel = ∓π

∫

d3p

(2π)3
1

2Ep
θ(kF−p)δ(2Epq0+ρq

2
0)

∣

∣

∣

∣

∣

|q|=0

,
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Fig. 1. (Colour on-line) Left: The singularities QB and QT of the function U
∗[0]
rel in the (|q|, q0)-plane. Here, having in mind

nucleons and∆’s, we havem = 0.938 GeV andM = 1.232 GeV. Solid lines denote the four singularitiesQB
±± and dashed lines the

±QT
±. Dotted lines denote the light cone. kF = 0.264 GeV/c. Light-grey (yellow) region: QB

−− > q0 > QB
−+; medium-grey (cyan)

region: −QT
− > q0 > QB

−−; dark-grey (green) region: QB
++ > q0 > QB

+−; very dark (red) region (not visible in this figure): QT
− >

q0 > QB
++. Right: as in left panel but with kF = 1.5 GeV/c, in order to emphasize the region QT

− > q0 > QB
++, otherwise invisible.

which is non-vanishing only in the regions quoted above,
its value being

= U
∗[0]
rel = ∓

|∆∗|

16π

∣

∣

∣

∣

∣

|q|=0

.

This result deserves a few comments. First, from the defi-

nition it follows that the imaginary part of U
∗[0]
rel must have

the sign ∓ according to whether q0 → q0 ± iη, in accord
with the above outcome. Then, since ∆∗ is negative in the
time-like region, we obtain

k2 = 0 , (80a)

k3 = ∓4 , (80b)

for QB
++ < q0 < QT

− or QB
−+ < q0 < −Q

T
+.

Next we consider the region QB
+− < q0 < QB

++.
Here, choosing a very small value for kF , the point q0 =
√

M2 + |q|
2
−m surely lies in the desired region, and one

gets

= U
∗[0]
rel = ∓

1

4π2

kF
∫

0

p2dp

2Ep

×

1
∫

−1

dxδ(2(E∗q −m)(Ep −m)− 2pqx) .

Being kF (and hence p) small, the argument of the δ-
function vanishes at

x̄ =
p

2|q|

(

E∗q
m
− 1

)

,

which is less than one. Thus the angular integration be-
comes trivial and we get

= U∗[0]rel = ∓
EF −m

16π|q|
.

Since this result should be a combination of the coefficients
of l2 and l3 then

k2 = ∓1 (81a)

k3 = ∓2 . (81b)

Finally we consider the region QB
−+ < q0 < QB

−−. Here
we choose q0 = −E∗q −m and, following the same steps as
before, under the same assumptions, we find that eqs. (81)
hold again.

The singularities, and the response regions, in the
plane |q|, q0 are displayed in fig. 1 (left and right pan-
els) for two different values of kF , one below (left) and
one well above (right) the critical value of kF .

6 The limiting cases

Having determined the response regions and the integers
k2 and k3 we are now able to derive the response functions
in the most general case. In this section we consider some
specific limiting cases.
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6.1 The case M = m

Here

QT
− = |q| , (82)

QT
+ =

√

4m2 + |q|
2

(83)

and the critical points q
(1)
cr and q

(2)
cr occur at 2kF and 0,

respectively. Furthermore, kcr
F = 0 and thus QB

+−(kF ) =
EkF−q −EF is always negative between q3cr = 0 and q4cr =
2kF . Finally the QB

+±(kF ) always live in the space-like
region.

The expressions for U∗rel given in sect. 4 are still valid,
provided we set M = m, which implies ∆ ≡ ∆∗ =
√

q2−4m2

q2 and ρ = 1. Concerning the imaginary parts,

nothing changes in the particle-antiparticle domain, while
in the particle-hole region, since q2cr vanishes, the response
is confined to the range

QB
+−(kF ) < q0 < QB

++(kF )

and k2 and k3 are given by (81).

6.2 The case m = 0

This case may correspond to the excitation of a light quark
to an s or c quark in a Quark Gluon Plasma.

Here
QT
± ≡ E

∗
q , (84)

while q
(1)
cr and q

(2)
cr tend to infinity: accordingly QT

± and

QB
+− never coincide. Furthermore kcr

F = M . Finally it

is immediately seen that q
(6)
cr → ∞, implying QB

++ >

|q| ∀kF , M , while q
(5)
cr = M2/(4kF ). Thus the response

region is represented by the intervals

QB
+−(kF ) < q0 < QB

++(kF ) ,

QB
−+(kF ) < q0 < QB

−−(kF ) ,

where eq. (81) holds, and by

QB
++(kF ) < q0 < QT

− ,

QB
−−(kF ) < q0 < −Q

T
+ ,

where instead (80) is valid.

Concerning the LF, since now ρ = ∆∗ = 1 − M2

q2 and

y∗± = 1
2

(

1− M2

q2

)

(|q|±q0), we end up with the expression

U
∗[0]
rel

∣

∣

m=0
=

(2kF + q0)q
2 −M2q0

32π2|q|q2

×

{

log

∣

∣

∣

∣

M2 − 2kF (q0 + |q|)− q
2

M2 − 2kF (q0 − |q|)− q2

∣

∣

∣

∣

+ iπk2

}

−
q2 −M2

32π2q2

×

{

log

∣

∣

∣

∣

∣

(M2 − 2kF q0 − q
2)2 − 4k2

F |q|
2

(M2 − q2)2

∣

∣

∣

∣

∣

+ iπk3

}

. (85)

6.3 The case M = m = 0

Finally we consider the extreme situation where both
masses vanish. Here the values QT

± coincide with the light

cone, whileQB
±± = ±|kF±|q||−kF and inside the response

region only the case of eq. (81) occurs.
The expression of U∗rel further simplifies to

U
∗[0]
rel

∣

∣

m=0
=

2kF + q0
32π2|q|

{

log

∣

∣

∣

∣

q2 + kF (q0 + |q|)

q2 + 2kF (q0 − |q|)

∣

∣

∣

∣

+ iπk2

}

−
1

32π2

{

log

∣

∣

∣

∣

∣

|q|
2
− (2kF + q0)

2

q2

∣

∣

∣

∣

∣

+ iπk3

}

.

(86)

7 The spin-1/2 resonances

In this section we explore the LFs associated to the ex-
citations of the nucleon, addressing first the simpler case
of the spin 1/2 resonances (e.g. the Roper (N ∗1440) res-
onance). For the sake of simplicity we disregard isospin,
which simply yields a numerical factor.

7.1 The 0-index functions

Here the vertices we consider, beyond the identity, carry
some γ-matrix structure of the type 6p or 6q times, even-
tually, a γ5. Owing to the mass shell condition for the
nucleon, 6p = (6p − m) + m can be replaced by m, since
6 p − m cancels with the nucleon propagator, leaving a
kF -independent term subtracted out by the renormalisa-
tion. The nucleon-hole case requires a separate discussion.

Similarly, 6q = (6p+ 6q−M)− (6p−m)− (M −m) leaves
us with the identity timesM−m plus, however, a contact
term, an occurrence reflecting our ignorance about the off-
shell reaction mechanisms. Actually the 6q vertex is redun-
dant as far as the imaginary part of the LFs, and hence
the response functions, are concerned. The real parts in-
stead are altered by an extra contact term that matters in
the response when higher orders (say, a RPA series) are
accounted for.

In attempting to account for the different off-shell
behaviour one meets a proliferation of complicated and
mostly irrelevant terms. Thus here we confine ourselves to
consider only the vertices O = I (σ-meson absorption), γ5

and 6qγ5 (pion absorption within the pseudoscalar and the
pseudovector coupling). This last, at variance of the pseu-
doscalar coupling, correctly describes the π0 suppression
in the photo-production process and respects the chiral
limit, owing to a further contact term added to the pseu-
doscalar vertex. Notice that the vertices containing a γ5

are derived from the corresponding parity-conserving ones
(up to, eventually, a sign) by replacing m with −m.

For the 0-index LFs eq. (27) applies and we only need
to specify AS and λSmn in the various cases.
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Considering first a scalar probe, the function fss reads

fss(p, q) = Tr(6p+ 6q +M)(6p+m) = 4(p2 + p · q +Mm)

= 2D∗(p+ q)− 2D(p) + 2Q+ ,
(87)

where use has been made of the identity (23) in the second
line. Thus we get AS(q2) = 2Q+ and λS10 = 2. The term
2D(p) is cancelled by the renormalisation when studying
the resonance-hole case, but it survives in the nucleon-hole
one. In conclusion

Π∗(0)ss (M ; |q|, q0) = 2T
∗[1,0]
S+ + 2Q+Υ

∗[0]
+ (M ; |q|, q0) . (88)

The other vertices are decoupled from the identity by
parity conservation. For the pseudoscalar coupling (γ5) we
find

Π∗(0)psps(M ; |q|, q0) = −Π
∗(0)
ss (M ; |q|, q0)

∣

∣

∣

∣

m→−m

. (89)

For the pseudovector coupling, introducing the notations

MT =M +m, δm =M −m , (90)

we find AS = 2M2
TQ− and λS10 = 2(δmMT−q

2ρ), λS20 = 2.
As already outlined, in going from the pseudoscalar to the
pseudovector LF the coefficient AS is multiplied by the
expected factor M2

T , but the contact term does not.
The pseudovector coupling conserves the axial current

(or alternatively the existence of the Goldstone boson).
Covariance would entail Π∗PV ∼ q

2, but, since it is broken,
the Goldstone theorem only requires

lim
q0→0
|q|→0

Π∗PV (M ; |q|, q0) = 0 . (91)

Now we observe that

Υ
[0]
+ (M ; 0, 0) = 2U

[0]
+ (M ; 0, 0) =

2

∫

d3p

(2π)3
1

2Ep

θ(kF − |p|)

m2 −M2
= −

2

M2 −m2
T

[0] (92)

and it is easily verified that the contact terms are tailored

in such a way to exactly cancel ASΥ
[0]
+ in the limit q → 0.

Finally the mixed pseudoscalar-pseudovector LF also
exists: it has AS = 2MTQ− and λS10 = 2δm while the
pseudovector-pseudoscalar function has the opposite sign.

The nucleon-hole case must be considered aside be-
cause of the different structure of the contact terms. For
example, the scalar-scalar response, owing to (87) leads to
the manifestly vanishing contact term

−2i

∫

d4p

(2π)4
Sm(p) + 2i

∫

d4p

(2π)4
Sm(p+ q) .

It is found that the only existing contact term pertains
to the pseudovector-pseudovector case and is given by
4q2T[0].

Table 1. The function AV
xy(q

2) for the scalar-vector Lindhard
function.

I → j
µ
1 I → j

µ
2 γ5 → j

µ
3 γ5 → j

µ
4

A
(1)
xy (q

2) 4MT
2

m
q2 4δm −

2

m
q2

7.2 The scalar-vector interference

In infinite nuclear matter a scalar probe can be trans-
formed, through a resonance (nucleon)-hole propagator,
into a vector one. Thus we shall consider, as before, the
scalar-type vertices I and γ5. Concerning the vector-like
vertices, 24 independent currents exist, 12 of them par-
ity conserving and 12 parity-violating (see, e.g., ref. [15]).
However, currents embodying a qµ (that can be extracted
out of the integral) times a (pseudo-)scalar structure re-
duce to a 0-index LF, already handled in sect. 7.1, times
qµ. Further, neglecting contact terms, 6p and 6q are redun-
dant and the Gordon identity

pµ = −
1

2
qµ +

1

4
(6 p+ 6 q −M)γµ +

1

4
γµ(6 p−m)

+
1

4
(M +m)γµ −

i

4
σµνqν (93)

allows us to express the current pµ in terms of the usual
currents γµ and σµνqν only on the mass shell, while the
off-mass-shell extension of the currents remains unpre-
dictable.

Disregarding the huge variety of contact terms and qµ,
only four independent currents survive, and they may be
forced to be conserved by adding some suitable terms pro-
portional to qµ. They read

jµ1 = γµ −
6qqµ

q2
, (94a)

jµ2 =
i

2m
qνσ

µν , (94b)

jµ3,4 = jµ1,2γ5 . (94c)

Furthermore jµ4 is expressible in terms of the other three
currents by exploiting the charge conjugation symmetry.

Since all these current are conserved, only the first
term of eq. (36) is required. The functions AV

xy(q
2) are

listed, with a self-explanatory notation, in table 1.

7.3 The 2-indices response

We consider now the vector-vector response and distin-
guish between three different sets of LFs.

1. First we examine the parity-conserving–parity-
conserving LFs (set up by the conserved currents
jµ1 and jµ2 ), which are symmetric tensors. Thus only
the functions Π∗L and Π∗T are required, that in
turn need the knowledge of AS , ALT and of the
corresponding λ’s, according to (45) and (46). The AS
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Table 2. The functions AS(q2) for the vector-vector parity-
conserving currents.

j
µ
1 j

µ
2

jν1 −
2Q−
q2

MT

mq2
Q−

jν2 −
MT

mq2
Q−

M2
T

2m2q2
Q−

Table 3. The functions ALT (q2) for the vector-vector parity-
conserving currents.

j
µ
1 j

µ
2

jν1 8 0

jν2 0 2
q2

m2

are summarised in table 2 and the ALT in table 3. The
contact terms λS10 pertaining to Π∗S are displayed in
table 4. The other contributions, namely the λLTi0 (q2)
are all vanishing. Instead, a coefficient λS20 survives for
the jµ2 j

ν
2 case and the relation λS20(j

µ
2 j

ν
2 ) = 1/(2m2q2)

holds.
2. Next we consider parity-conserving–parity-violating

LFs (currents jµ1 and jµ2 at the incoming vertex, jµ3
and jµ4 at the outgoing one). Here the tensors are an-
tisymmetric and eq. (49) applies with the second term
only, namely

qλN
σgσρε

µνρλΠ∗Vxy−(M ; |q|, q0) ,

with Π∗Vxy− defined by eq. (34). The required functions

A∗V (q2) are displayed in table 5. No contact term ex-
ists. The case jµ2 j

ν
4 would provide a non-vanishing func-

tion λV10, but actually T
[1,0]
x− = 0. Finally if we reverse

the vertices the following relation holds:

Π
(2)µν

jµnjνm
= (−1)m+1Π

(2)µν

jµmjνn
, m = 1, 2 , n = 3, 4 .

(95)
3. The parity-violating–parity-violating LFs are derived

from the parity-conserving–parity-conserving ones
through the simple relations

Π∗j3,j3,4 = Π∗j1,j1,2 |m→−m , (96a)

Π∗j4,j3,4 = −Π∗j2,j1,2 |m→−m . (96b)

Again the nucleon-hole case differs from the above only
for the contact terms, because a direct evaluation shows
that the various Q are just the limits of the Q∗ for M →
m. Only one contact term exists for the case jµ1 j

ν
1 , with

λS10 = −2/q2.

Table 4. The contact terms λS10(q
2) for the vector-vector

parity-conserving currents.

j
µ
1 j

µ
2

jν1 −
2

q2

δm

mq2

jν2 −
δm

mq2
−
q2ρ−MT δm

2m2q2

Table 5. The functions A∗V (q2) for the vector-vector parity-
conserving–parity-violating currents.

j
µ
1 j

µ
2

jν3 4i −2i
MT

m

jν4 −2i
δm

m
i
MT δm

m2

8 The spin-3/2 resonances

We consider now the excitation of a nucleon to a spin-3/2
resonance (specifically the ∆(1232) ), assumed to be sta-
ble. The resonance is described by a vector-spinor field ψµ
obeying the Rarita-Schwinger equations

(i 6∂ −m)ψµ = 0 , (97a)

γµψµ = 0 , (97b)

∂µψµ = 0 , (97c)

(the last line is, more properly, a constraint) which can be
deduced from the Lagrangian [16]

L = ψ̄µ

{

(i 6∂ −M)gµν + iω(γµ∂ν + ∂µγν)

+
i

2

(

3ω2 + 2ω + 1
)

γµ 6∂γν

+
(

3ω2 + 3ω + 1
)

Mγµγν
}

ψν , (98)

ω (6= −1/2) being a free parameter. Each value of ω leads
to the equations of motion (97), but does not prevent the
occurrence of a spin-1/2 component in the ω-dependent
vector-spinor ψµ. Thus, to rule out these unwanted com-
ponents, one usually introduces the projection operator
on the spin-3/2 space, which reads (in momentum space)

Pµν
3/2 = gµν −

1

3
γµγν −

1

3p2
( 6pγµpν + pµγν 6p) , (99)

or, sometimes, its on-shell reduction

Pµν
3/2 → Pµν

3/2

∣

∣

p2→M2 . (100)

The most common choices are ω = −1/3, that leads to the
Rarita-Schwinger result, and ω = −1, that corresponds to
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the Lagrangian

L = ψ̄µ
{

−εµνλργ5γλ∂ρ − iMσµν
}

ψν . (101)

Another Lagrangian has been recently proposed,
namely [17]

L = ψ̄µ
{

−εµνλργ5γλ∂ρ −Mgµν
}

ψν , (102)

in order to solve the so-called Velo-Zwanziger disease [18,
19]. However, we do not discuss such a Lagrangian here, as
it describes a resonance propagating in an external electro-
magnetic field with the (minimally coupled) ∆∆γ vertex,
while we only consider non-minimal N -∆ transitions. Fur-
thermore, the proposal (102) is seriously plagued by the
occurrence of a pole at p2 = M2/4, as the evaluation of
the propagator (the inverse of Γ µν) shows.

Sticking to the more sound form (98), observe that
different values of ω not only alter the mixing between
3/2 and 1/2 spin, but also affect the off-shell behaviour of
the ∆-hole propagator, that in fact reads

∆µν =
6p+M

p2 −M2

{

gµν −
1

3
γµγν −

1

3M
(γµpν − γνpµ)

−
2

3M2
pµpν

}

+
1 + ω

6M2(1 + 2ω)2

{

(1 + 3ω)

×(γµpν + γνpµ) + (1 + ω)(γµpν − γνpµ)

−2Mωγµγν + (1 + ω) 6pγµγν
}

(103)

Remarkably the choice ω = −1 cancels in (103) all the
terms with no analytic structure, which would otherwise
contribute to the contact terms in the ∆-hole LF.

8.1 The 0-index ∆-hole Lindhard functions

Here the vertices have the form ψ̄jµψµ or ψ̄jµPµν
3/2ψν ,

where jµ could be taken from eq. (94) plus the non-
conserved qµ and γ5q

µ. Clearly

fxy(p, q) = Tr(6p+m)jxµ∆
µνjyν , (104)

or, alternatively,

fxy(p, q) = Tr(6p+m)jxµP
µλ
3/2∆

λ
ρP

ρν
3/2jyν . (105)

However, the vector γµ is constrained by (97b) so that this
current, when contracted with ∆µν , is vanishing on shell,
does not develop an imaginary part and consequently it
can only contribute to the contact terms. The same oc-
curs for γµγ5. Furthermore σµλqλ can be replaced by qµ

because
σµνqνψµ = iqµψµ .

Thus only the two currents

j1(N∆)µ = qµ , (106a)

j2(N∆)µ = qµγ5 , (106b)

actually matter, at least for the part carrying analytic
structure. Since we are dealing with a 0-index LF, the
structure is given by (27). With self-explanatory notations
the non-vanishing AS are found to be

AS
jµ1 j

ν
1
= −

Q−Q
2
+

3M2
, AS

jµ2 j
ν
2
=
Q2
−Q+

3M2
. (107)

Concerning the contact terms, we will not give a detailed
list for all the 24 currents, because they all explicitly de-
pend upon ω and display a double pole at ω = −1/2: hence
they can diverge and the real part of the LFs becomes un-
predictable. As a consequence, the RPA series based on
the ∆-hole excitation (and, similarly, any calculation be-
yond the bare Free Fermi Gas) becomes unreliable.

The same happens if we use the expression (105) taking
however the projection operator in the form (100). We
get indeed eqs. (107) for the functions AS , but again the
contact terms display a double pole in ω.

Finally we can take the projection operator in the form
(99). Now the expressions (107) are again valid, but the
contact terms are independent of ω and, furthermore, they
do not change in replacing qµ with iσµνqν . They display
however a factor (p + q)−2 coming from the projection
operator eq. (99). For instance, in the current j1(N∆)

µ

they take the form

∫

d3p

(2π)3
1

2Ep

{

(m2 − q2)2(m2 + 2mM − q2)

3M2(p+ q)2

∣

∣

∣

p2=m2

+
1

3
(2q2 − 2p · q −M2 − 2mM)

}

×θ(kF − |p|) + (q0 ←→ −q0) .

Here the first term is just the function U
∗[0]
rel evaluated

at M = 0, thus explaining the introduction of the factor

BS
xy(q

2)Υ
∗[0]
± (M = 0; |q|, q0) in eq. (27). Explicitly the case

(jµ1 j
ν
1 ) requires

BS
jµ1 j

ν
1
=

(m2 − q2)2(m2 + 2mM − q2)

3M2
(108)

and furthermore λS10 = (m2 − 2mM − 2M2 + 3q2)/3 and
λS20 = −1/3. Finally,

Π
∗(0)

jµ2 j
ν
2
= −Π

∗(0)

jµ1 j
ν
1

∣

∣

m→−m
. (109)

8.2 The 1-index function

Now we consider the case of the transition from a scalar
to a vector term, which leads to a 1-index LF. Here, be-
sides the vectors discussed in the previous subsection, we
also need a tensor operator yielding a vector when con-
tracted with the ∆ propagator. Again one can set up a
vast amount of tensors: we limit ourselves to those which
give LFs with the same analytic structure, ignoring extra
contact terms.
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We are thus left with eight possible currents, namely

jνX = ψΓµν
X ψµ + h. c. (110)

with

Γµν
M(V ) = −

3

2

µ+ 1

Q+
εµναβpαqβ , (111a)

Γµν
E(V ) = −Γ

µν
M(V ) − i

3

2

µ+ 1

Q+Q−
4εµσαβpαqβε

ν
σγδp

γqδγ5 ,

(111b)

Γµν
C(V ) = −i

3

2

µ+ 1

Q+Q−
2qµ

(

q2pν − p · qqν
)

γ5 , (111c)

Γµν
M(A) = −i

3

2

µ− 1

Q−

[

− 2γ5ε
µναβpαqβ

−
2

Q+
εµσαβpαqβε

ν
σγδp

γqδ
]

, (111d)

Γµν
E(A) = −i

3

2

µ− 1

Q+Q−
2εµσαβpαqβε

ν
σγδp

γqδ , (111e)

Γµν
C(A) = i

3

2

µ− 1

Q+Q−
2qµ

(

q2pν − p · qqν
)

, (111f)

Γµν
S(V ) = gµνγ5 , (111g)

Γµν
S(A) = gµν , (111h)

(here µ =M/m). We have followed in the above the work
of Devenish et al. [20]: these author show that, for a transi-
tion from a nucleon to a higher spin resonance (not neces-
sarily 3/2), only three conserved currents enter the parity-
conserving sector and as many the parity-violating one. In
the low-momentum regime tensors associated to these six
currents correspond to the multipoles M1, E2, C2, M2,
E1, C1 (the first three being parity conserving, the other
parity violating). We have added two other currents, which
are not conserved, thus exhausting all the possibilities.

We see that again LFs with only one vector index ex-
ists, but they only occur between a Coulomb multipole
and the non-conserved currents (106). The case (jµ2 ΓC(V ))
contains only a tµ in the integrand, thus the expres-
sion (34) applies (first term in (36)) with

AV
jµ2 ΓC(V )

= −i
MT

mM2
Q− , (112a)

BV
jµ2 ΓC(V )

= i
MT

mM2

(m2 − q2)2(m2 − 2mM − q2)q2

Q+Q−
,

(112b)

λV10 =
iMT q

2

m

m2 + 2mM − 2M2 + 3q2

Q+Q−
, (112c)

λV20 = −
iMT q

2

mQ+Q−
. (112d)

Table 6. The AS(q2) functions for the vector-vector ∆-N par-
ity conserving currents.

ΓM(V ) ΓE(V ) ΓC(V )

3M2
T

4m2q2
Q−

9M2
T

4m2q2
Q− 0

Table 7. The ALT (q2) functions for the vector-vector ∆-N
parity-conserving currents.

ΓM(V ) ΓE(V ) ΓC(V )

3M2
T q

2

m2Q+

9M2
T q

2

m2Q+
−

3M2
T q

4

m2M2Q+

The case (jµ2 ΓS(V )) requires the full expression (36) and

we find (since T
[1,0]
S− = 0)

AV
jµ2 ΓS(V )

=
2Q−
3M2

(q2 +M2 −m2) , (113a)

BV
jµ2 ΓS(V )

=
2

3M2
(m2 − 2mM − q2)(m2 − q2) , (113b)

λV10 =
2

3
, (113c)

AS
jµ2 ΓS(V )

=
Q2
−Q+q

2

3M2
, (113d)

BS
jµ2 ΓS(V )

= −
1

3M2q2
(m2 − 2mM − q2)(m2 − q2)2 ,

(113e)

λS20 =
1

3q2
. (113f)

The LFs with opposite parity simply obtain as

Π
∗(1)µ
j1,Γx(A)

(|q|, q0) = −Π
∗(1)µ
j2,Γx(V )

(|q|, q0)
∣

∣

m→−m
. (114)

8.3 The 2-indices functions

8.3.1 Parity-conserving–parity-conserving Lindhard
functions

We consider first of all the couplings M1, E2 and C2
(parity conserving) in both vertices. These currents be-
ing conserved, we can directly apply eqs. (45) and (46).
Hence the functions AS

xy, A
LT
xy and the corresponding λ’s

are needed. Remarkably, AS
xy and ALT

xy are diagonal with
respect to the channel indices and are quoted in tables 6
and 7, respectively. Instead, a contact term coupling the
multipolesM1 and E2 exists (it is reported in appendix C
together with all the other contact terms).
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Both the multipoles M1 and E2 display the structure
of eqs. (45) and (46) with, however, Bx = 0, while in the
Coulomb multipole C2 the contribution proportional to
Π∗S is absent. ALT is given in table 7 and furthermore

BLT
C(V )C(V )(q

2) =
3M2

T q
4

m2M2Q2
+Q

2
−

×(m2 − q2)2(m2 − 2mM − q2). (115)

Observe also that in this sector Π
∗(2)µν
xy = Π

∗(2)µν
yx .

8.3.2 Parity-conserving–parity-violating Lindhard functions

This kind of LF is antisymmetric in the indices µ, ν and
takes the form

qλN
σgσρε

µνρλΠ∗Vxy−(M ; |q|, q0)

(see eq. (34)). We thus need to specify the functions AV
xy

and the contact terms. The only non-vanishing AV
xy are

AV
E(V )M(A)(q

2) = 3AV
M(V )E(A)(q

2) = −
9iMT δm

2m2
(116)

and for the relevant contact terms (not λV10 T
[1,0]
V− = 0) we

refer the reader to appendix C. Moreover,

Π0µν
x(A)y(V ) = −Π

0µν
x(V )y(A) (117)

(with x, y =M,E,C).

8.3.3 Parity-violating–parity-violating Lindhard functions

The functions AS , ALT and BLT follow from the parity-
conserving–parity-conserving case with the replacements

Ax
E(A)E(A)(q

2) = −Ax
M(V )M(V )(q

2)
∣

∣

m→−m
,

Ax
M(A)M(A)(q

2) = −Ax
E(V )E(V )(q

2)
∣

∣

m→−m
,

ALT
C(A)C(A) = −A

LT
C(V )C(V )

∣

∣

m→−m
,

BLT
C(A)C(A) = −B

LT
C(V )C(V )

∣

∣

m→−m
.

(118)

As for the parity-conserving–parity-conserving case the

rule (involving contact terms) Π
∗(2)µν
xy = Π

∗(2)µν
yx holds.

The contact terms (see appendix C) have a quite involved
structure.

8.3.4 Lindhard functions involving non-conserved currents

A LF having the first vertexM(V ) or E(V ) and the second
S(V ) (this last corresponds to a non-conserved current) is
non-vanishing and has the structure of eq. (40) (a sym-
metric LF obeying the current conservation law). Thus it
can be expressed in terms of eqs. (39) with

3AS
M(V )S(V ) = AS

E(V )S(V ) =
3iMTQ−
2mq2

(119)

and

3ALT
M(V )S(V ) = ALT

E(V )S(V ) =
6iMT q

2

mQ+
. (120)

The same happens for Π
∗(2)µν
E(A)S(A) with

AS
E(A)S(A) = −i

δmQ+

mq2
, ALT

E(A)S(A) = −4i
δmq2

mQ−
,

(121)

while Π
∗(2)µν
M(A)S(A) only displays contact terms (see ap-

pendix C).

The LFΠ
∗(2)µν
C(V )S(V ) has a different structure: it contains

a symmetric current-conserving term, as in eq. (40), with
AS
C(V )S(V ) = 0 and

ALT
C(V )S(V ) =

2iMT q
2

mM2Q+

[

m2 −M2 − q2
]

, (122a)

BLT
C(V )S(V ) = −

2iMT q
2

mM2Q+Q−
(m2 − q2)(m2 − 2mM − q2)

(122b)

plus the following term proportional to qν :

N
µqν
[

−
iMTQ−
mM2

Q
∗V
− +

iMT

mM2Q+Q−

×(m2 − q2)2(m2 − 2mM − q2)Q∗V− (M = 0)

+
∑

m

λVm0T
∗[m−1,0]
V− (|q|, q0)

]

, (123)

with the contact terms given in appendix C. The symme-
try relation

Π
∗(2)µν
C(A)S(A) = −Π

∗(2)µν
C(V )S(V )

∣

∣

m→−m
(124)

holds.
The functions with initial vertex M(A) and E(A) and

final vertex S(V ), as well as Π
∗(2)µν
M(V )S(A) and Π

∗(2)µν
S(V )S(A)

are antisymmetric and are given by the second term of
eq. (49), namely

qλN
σgσρε

µνρλΠ∗Vxy−(M ; |q|, q0) ,
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with

AV
M(A)S(V ) = 3AV

E(A)S(V ) = −3
δm

m
, (125)

AV
M(V )S(A) =

2MT

m
(126)

and

AV
S(V )S(A) =

4i

3
, (127)

while Π
∗(2)µν
E(V )S(A) has only contact terms and Π

∗(2)µν
C(A)S(V ) =

Π
∗(2)µν
C(V )S(A) = 0.

Next we consider the symmetric function Π
∗(2)µν
S(V )S(V ).

Since the current is not conserved, it is contributed to by
all the terms in eq. (47). Thus it displays a conserved part,
which has

AS
S(V )S(V ) = −

4Q−
3q2

, (128a)

ALT
S(V )S(V ) =

4Q−
3M2

, (128b)

BLT
S(V )S(V ) =

4(q2 −m2 + 2mM)

3M2
, (128c)

plus a non-conserved one (last two terms in (47)). The lat-
ter requires the knowledge of Π∗VS(V )S(V )− —in turn fixed

by (see eq. (34))

AV
S(V )S(V ) =

2Q−
3M2q2

(M2 −m2 + q2) , (129)

BV
S(V )S(V ) =

2(m2 − q2)(m2 − 2mM − q2)

3M2q2
. (130)

Finally for the third term, which, being proportional to
qµqν , is associated to a scalar quantity, as in eq. (27), we
get

ÃS
S(V )S(V ) =

Q2
−Q+

3M2q4
, (131)

BS
S(V )S(V ) = −

(m2 − q2)2(m2 − 2mM − q2)

3M2q4
. (132)

Again the symmetry relation

Π
∗(2)µν
S(A)S(A) = −Π

∗(2)µν
S(V )S(V )

∣

∣

m→−m
(133)

holds.

Note that the interchange of the initial and final vertex
entails an interchange also of the indices µ and ν.

Appendix A. The elementary functions
T∗[m,n]

The functions defined in eq. (26) are given by

T
∗[1,0]
S+ = 2T[0] , (A.1)

T
∗[2,0]
S+ = 2q2ρT[0] , (A.2)

T
∗[2,0]
S− = 4q0T

[1] , (A.3)

T
∗[3,0]
S+ = −

2

3
(4m2|q|

2
− 3ρ2q4)T[0]

+
8

3
(3q20 + |q|

2
)T[2] , (A.4)

T
∗[4,0]
S+ = 2ρq2(ρ2q4 − 4m2|q|

2
)T[0]

+8ρq2(3q20 + |q|
2
)T[2] , (A.5)

T
∗[5,0]
S+ = 2

[

(

q4ρ2 − 4m2|q|
2
)2

−
64

5
m4|q|

4

]

T
[0] ,

+

[

16q4ρ2(3q20 + |q|
2
)−

64

5
m2|q|

2
(5q20 + |q|

2
)

]

T
[2]

+ 32

[

(

q20 + |q|
2
)2

−
4

5
|q|

4

]

T
[4] , (A.6)

T
∗[1,0]
V+ = −2

|q|
2

q2
T

[1] , (A.7)

T
∗[2,0]
V+ = −2ρ|q|

2
T

[1] , (A.8)

T
∗[2,0]
V− =

4q0|q|
2

3q2

(

m2
T

[0] − 4T[2]
)

, (A.9)

T
∗[3,0]
V− = 2ρ|q|

2
T
∗[2,0]
V− , (A.10)

T
∗[4,0]
V− =

4m2q0|q|
2

q2

(

q4ρ2 −
4

5
m2|q|

2

)

T
[0]

−
16q0|q|

2

q2

[

q4ρ2 −m2

(

q20 +
7

5
|q|

2

)]

T
[2]

−
32q0|q|

2

q2

[

q20 +
3

5
|q|

2

]

T[4] , (A.11)

T
∗[1,0]
L+ = −

2|q|
2

3q4

[

m2q20T
[0] − (q2 + 4|q|

2
)T[2]

]

, (A.12)

T
∗[2,0]
L+ = q2ρT

∗[1,0]
L+ , (A.13)

T
∗[3,0]
L+ = −

2

3

m2q20 |q|
2

q4

[

q4ρ2 −
12

5
m2|q|

2

]

T
[0]

+
2

3

|q|
2

q4

[

(q20 + 3|q|
2
)q4ρ2

−
4

5
m2(q20 + 5|q|

2
)(|q|

2
+ 5q20)

]

T
[2]

+
8

3

|q|
2

q4

[

q4 +
48

5
q20q

2

]

T[4] , (A.14)

T
∗[1,0]
T+ = −

4

3
m2

T
[0] +

4

3
T

[2] , (A.15)

T
∗[2,0]
T+ = q2ρT

∗[1,0]
T+ , (A.16)
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T
∗[3,0]
T+ = −

4

3
m2

[

q4ρ2 −
4

5
m2|q|

2

]

T
[0]

+
4

3

[

q4ρ2 − 4m2

(

q20 +
2

5
|q|

2

)]

T
[2]

+
16

3

[

q20 +
1

5
|q|

2

]

T
[4] . (A.17)

Appendix B. The elementary functions U∗[n]

In sect. 4 we have derived the functions U
∗[0]
rel . Actually

we also need U
∗[1]
rel and U

∗[2]
rel , which be be provided in this

appendix. It is clear from the derivation of U
∗[0]
rel that the

entire class of functions defined by eq. (18) has a common
structure, namely

U
∗[n]
rel = α

[n]
0 + α

[n]
1 l1 + α

[n]
2 l2 + α

[n]
3 l3 . (B.1)

The coefficients are given by

α
[0]
0 = 0 , (B.2a)

α
[0]
1 = −

ρ

16π2
, (B.2b)

α
[0]
2 =

q0ρ+ 2EF
32π2|q|

, (B.2c)

α
[0]
3 = −

∆∗

64π2
, (B.2d)

α
[1]
0 = −

ρkF
32π2

, (B.2e)

α
[1]
1 =

q0
32π2

[

ρ2 −
2m2

q2

]

, (B.2f)

α
[1]
2 =

1

128π2|q|

[

4k2
F − (|q|

2
+ q20)ρ

2 +
4m2q20
q2

]

,

(B.2g)

α
[1]
3 =

q0
128π2

ρ∆∗ , (B.2h)

α
[2]
0 =

kF q0
48π2

[

ρ2 −
ρEF
2q0

−
2m2

q2

]

, (B.2i)

α
[2]
1 = −

ρ

192π2

[

ρ2(|q|
2
+ 3q20)−

6m2

q2
(|q|

2
+ q20)

]

,

(B.2j)

α
[2]
2 =

1

384π2|q|

{

ρq0

[

(3|q|
2
+ q20)ρ

2

−
12m2|q|

2

q2

]

+ 8E3
F

}

, (B.2k)

α
[2]
3 =

∆∗

768π2

[

4m2|q|
2

q2
− (|q|

2
+ 3q20)ρ

2

]

. (B.2l)

Appendix C. The contact terms for the
2-indices ∆-N functions

In this appendix we list the 69 non-vanishing contact
terms associated to the two-indices LFs of sect. 3.4. We

use the notation λαmnX1(Y1)X2(Y2)
, where α = S, V, LT is

associated to the Lorentz components, Xi = M,E,C, S
to the magnetic, electric, Coulomb or scalar nature of the
two currents (i = 1, 2) and Yi = V,A to the their vector
or axial parts, respectively. They are given by

1) vertices M(V )M(V )

λS10M(V )M(V ) = −
3M2

T

4m2q2

(

1− 4
M2 − q2

Q+

)

, (C.1)

λS20M(V )M(V ) = −
3M2

T

4m2q2Q2
+

(

Q− − 4(M2 − q2)
)

, (C.2)

λS30M(V )M(V ) = −
3M2

T

4m2q2Q2
+

, (C.3)

λLT10M(V )M(V ) =
3M2

T q
2

m2Q2
+

; (C.4)

2) vertices M(V )E(V )

λS10M(V )E(V ) =
3M2

T

4m2q2

(

1−
4m2

Q+

)

, (C.5)

λS20M(V )E(V ) =
3M2

T

4m2q2Q2
+Q−

×
(

3q4ρ2 − 4mMq2ρ− 4m2MT δm
)

,
(C.6)

λS30M(V )E(V ) =
3M2

T

4m2q2Q2
+Q−

[3Q+ − 4m(2m+M)] ,

(C.7)

λS40M(V )E(V ) =
3M2

T

4m2q2Q2
+Q−

, (C.8)

λLT10M(V )E(V ) =
3M2

T q
2

m2Q2
+Q−

(

Q+ − 4m2
)

, (C.9)

λLT20M(V )E(V ) =
3M2

T q
2

m2Q2
+Q−

; (C.10)

3) vertices E(V )E(V )

λS10E(V )E(V ) =
3M2

T

4m2q2Q+
[15Q+ − 4m(5m+ 6M)] ,

(C.11)

λS20E(V )E(V ) =
3M2

T

4m2q2Q2
+Q−

[31q4ρ2 − 28m(2m

+M)q2ρ− 20m2MT δm] , (C.12)

λS30E(V )E(V ) =
3M2

T

4m2q2Q2
+Q

2
−

[33q4ρ2 − 4m(13m

− 5M)q2ρ− 4m2(9m+ 7M)δm] , (C.13)

λS40E(V )E(V ) =
3M2

T

2m2q2Q2
+Q

2
−

(9Q− + 16mδm) , (C.14)

λS50E(V )E(V ) =
3M2

T

m2q2Q2
+Q

2
−

, (C.15)
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λLT10E(V )E(V ) =
3M2

T q
2

m2Q2
+Q−

[9Q− − 8m(m− 3M)] ,

(C.16)

λLT20E(V )E(V ) =
6M2

T q
2

m2Q2
+Q

2
−

(5Q− + 8mδm) , (C.17)

λLT30E(V )E(V ) =
12M2

T q
2

m2Q2
+Q

2
−

; (C.18)

4) vertices C(V )C(V )

λLT10C(V )C(V ) =
3M2

T q
4

m2Q2
+Q

2
−

(Q+ − 3M2 + 4q2) , (C.19)

λLT20C(V )C(V ) = −
3M2

T q
4

m2Q2
+Q

2
−

; (C.20)

5) vertices M(V )M(A)

λV20M(V )M(A) = −
3iMT δm

m2Q2
+Q−

q2ρ , (C.21)

λV30M(V )M(A) =
3iMT δm

2m2Q2
+Q−

; (C.22)

6) vertices M(V )E(A)

λV20M(V )E(A) = −
3iMT δm

2m2Q2
+Q−

[3Q− + 4m(2M −m)] ,

(C.23)

λV30M(V )E(A) = −
3iMT δm

2m2Q2
+Q−

; (C.24)

7) vertices E(V )M(A)

λV20E(V )M(A) =
6iMT δm

m2Q2
+Q

2
−

{−2q4ρ2 +m(5m+ 3M)

× q2ρ+ 2m2q2} , (C.25)

λV30E(V )M(A) = −
3iMT δm

2m2Q2
+Q

2
−

[Q+ + 4m(2m+M)] ,

(C.26)

λV40E(V )M(A) =
3iMT δm

2m2Q2
+Q

2
−

; (C.27)

8) vertices E(V )E(A)

λV20E(V )E(A) = −
3iMT δm

2m2Q2
+Q

2
−

×
[

3q4ρ2 − 4mδmq2ρ− 4m2q2
]

, (C.28)

λV30E(V )E(A) = −
3iMT δm

2m2Q2
+Q

2
−

{3Q+ − 4m(2m+M)} ,

(C.29)

λV40E(V )E(A) = −
3iMT δm

2m2Q2
+Q

2
−

; (C.30)

9) vertices M(A)M(A)

λS10M(A)M(A) = −
3δm2

4m2q2Q−
[9Q− − 8m(m− 3M)] ,

(C.31)

λS20M(A)M(A) =
3δm2

2m2q2Q+Q2
−

×
{

−5q4ρ2 + 4m(3m+M)q2ρ+ 4m2q2
}

,
(C.32)

λS30M(A)M(A) = −
3δm2

2m2q2Q2
+Q

2
−

{3q4ρ2 − 4m(2m+M)

× q2ρ+ 4m2MT (3m+M)} , (C.33)

λS40M(A)M(A) = −
3δm2

4m2q2Q2
+Q

2
−

{3Q+ − 8mMT } ,

(C.34)

λS50M(A)M(A) = −
3δm2

4m2Q2
+Q

2
−

, (C.35)

λLT10M(A)M(A) = −
3δm2q2

m2Q2
+Q

2
−

{3q4ρ2 − 4m(4m+ 3M)

× q2ρ+ 4m2MT (5m+ 3M)} , (C.36)

λLT20M(A)M(A) = −
3δm2q2

m2Q2
+Q

2
−

{

Q− − 4m2
}

, (C.37)

λLT30M(A)M(A) = −
3δm2q2

m2Q2
+Q

2
−

; (C.38)

10) vertices M(A)E(A)

λS10M(A)E(A) =
3δm2

4m2q2
, (C.39)

λS20M(A)E(A) = −
3δm2ρ

m2Q+Q−
, (C.40)

λS30M(A)E(A) =
3δm2

2m2Q2
+Q

2
−

{

3q2ρ2 − 4m2
}

, (C.41)

λS40M(A)E(A) = −
3δm2ρ

m2Q2
+Q

2
−

, (C.42)

λS50M(A)E(A) =
3δm2

4m2q2Q2
+Q

2
−

, (C.43)

λLT10M(A)E(A) =
3δm2q2

m2Q+Q−
, (C.44)

λLT20M(A)E(A) = −
6δm2q4ρ

m2Q2
+Q

2
−

, (C.45)

λLT30M(A)E(A) =
3δm2q2

m2Q2
+Q

2
−

; (C.46)

11) vertices E(A)E(A)

λS10E(A)E(A) = −
3δm2

4m2q2Q−
[5Q− + 8mδm] , (C.47)
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λS20E(A)E(A) = −
3δm2

2m2q2Q+Q2
−

[5q4ρ2 − 4m(2m−M)

× q2ρ− 4m2MT δm] , (C.48)

λS30E(A)E(A) = −
3δm2

2m2q2Q2
+Q

2
−

[5q4ρ2 − 4m(2m+M)

× q2ρ− 4m2MT δm] , (C.49)

λS40E(A)E(A) = −
3δm2

4m2q2Q2
+Q

2
−

[5Q− − 4m(2m− 3M)] ,

(C.50)

λS50E(A)E(A) = −
3δm2

4m2q2Q2
−Q

2
+

, (C.51)

λLT10E(A)E(A) = −
3δm2q2

m2Q+Q2
−

[3Q− + 4mδm] , (C.52)

λLT20E(A)E(A) = −
3δm2q2

m2Q2
−Q

2
+

[3Q+ − 4mMT ] , (C.53)

λLT30E(A)E(A) = −
3δm2q2

m2Q2
−Q

2
+

; (C.54)

12) vertices C(A)C(A)

λLT10C(A)C(A) =
3δm2q4

m2Q2
−Q

2
+

[

3Q+ − (2m+M)2
]

, (C.55)

λLT20C(A)C(A)

3δm2q4

m2Q2
−Q

2
+

; (C.56)

13) vertices M(V )S(V )

λS10M(V )S(V ) = −
iMT ρ

mQ+
, (C.57)

λS20M(V )S(V ) =
iMT

2mq2Q+
; (C.58)

14) vertices E(V )S(V )

λS10E(V )S(V ) =
iMT

mq2Q+
[Q+ − 6mMT ] , (C.59)

λS20E(V )S(V ) =
iMT

2mq2Q+Q−
[11Q− + 16mδm] , (C.60)

λS30E(V )S(V ) =
2iMT

mq2Q+Q−
, (C.61)

λLT10E(V )S(V ) =
8iMT q

2

mQ+Q−
; (C.62)

15) vertices C(V )S(V )

λLT10C(V )S(V ) = −
2iMT q

2

mQ+Q−
, (C.63)

λV20C(V )S(V ) = −
iMT

mQ+Q−
; (C.64)

16) vertices M(A)S(V )

λV20M(A)S(V ) =
δm

mQ+Q−
; (C.65)

17) vertices E(A)S(V )

λV20E(A)S(V ) = −
δm

mQ+Q−
; (C.66)

18) vertices S(V )S(V )

λS10S(V )S(V ) = −
4

3q2
, (C.67)

λ̃S10S(V )S(V ) = −
m2 + 2mM − 2M2 + 3q2

3q4
, (C.68)

λ̃S10S(V )S(V ) =
1

3q4
; (C.69)

19) vertices E(V )S(A)

λV20E(V )S(A) =
2MT

mQ+Q−
; (C.70)

20) vertices M(A)S(A)

λS10M(A)S(A) = i
δm

mq2
, (C.71)

λS20M(A)S(A) = −
2iδmρ

mQ+Q−
, (C.72)

λS30M(A)S(A) =
iδm

mq2Q+Q−
, (C.73)

λLT10M(A)S(A) =
4iδmq2

mQ+Q−
; (C.74)

21) vertices E(A)S(A)

λS10E(A)S(A) = −i
δm

mq2Q−
(3Q− + 4mδm) , (C.75)

λS20E(A)S(A) = −i
δm

mq2Q+Q−
[3Q− + 4m(2M −m)] ,

(C.76)

λS30E(A)S(A) = −i
δm

mq2Q+Q−
, (C.77)

λLT10E(A)S(A) = −4i
δmq2

mQ+Q−
. (C.78)
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